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Gene-silencing strategies based on catalytic nucleic acids have been rapidly developed 
in the past decades. Ribozymes, antisense oligonucleotides and RNA interference 
have been actively pursued for years due to their potential application in gene 
inactivation. Pioneered by Joyce et al., a new class of catalytic nucleic acid composed 
of deoxyribonucleotides has emerged via an in vitro selection system. The therapeutic 
potential of these RNA-cleaving DNAzymes have been shown both in vitro and in vivo. 
Although they rival the activity and stability of synthetic ribozymes, they are limited 
by inefficient delivery to the intracellular targets. Recent successes in clinical testing 
of the DNAzymes in cancer patients have revitalized the potential clinical utility of 
DNAzymes.

Due to the simple four-nucleotide chemistry 
and standard Watson–Crick pairing, nucleic 
acids are appealing targets for exogenous 
regulation of gene expression. Utilizing 
hybridization to achieve artificial gene sup-
pression is mostly related to the involvement 
of single-stranded oligodeoxynucleotides and 
double-stranded siRNA based approaches, 
both of which have been developed in labora-
tory and clinical applications. Other nucleic 
acids-based technologies may also find appli-
cations in this field. Gene suppression medi-
ated by RNA-cleaving catalytic DNA has 
been one of the promising strategies for such 
applications. These molecules recognize their 
targets by hybridization and then cleave the 
target without assistance of any host-encoded 
proteins. The nuclease-independent cata-
lytic DNA or DNAzymes open a new field 
that is beyond the scope of RNAi-depen-
dent siRNA and ribonuclease H-dependent 
oligodeoxynucleotides.

In 1994, Breaker and Joyce proposed that 
DNA could have catalytic activity as for 
ribozymes. However, no naturally occurring 
DNAzyme was found because DNA always 
presents as a complete duplex. Thus, they 
came up with an in vitro selection system to 
obtain DNAzymes that cleaved RNA. The 

system was based on hydrolytic cleavage of 
a phosphodiester and nested PCR [1–3]. First, 
they established a pool of 1014 ssDNA mol-
ecules. Each one contained a 5′ biotin moi-
ety, followed by a 50 random deoxyribonu-
cleotides domain which was flanked by fixed 
sequence. Then these molecules were com-
bined to a streptavidin affinity matrix and 
washed with buffer to remove the unbound. 
Next, the same buffer containing certain 
cation passed through the matrix to cause 
cation-dependent cleavage of phosphoester 
and release the catalytic DNAs. These DNAs 
were collected and amplified by nested PCR, 
reintroducing the 5́  biotin and target phos-
phoester. After serveral rounds of selection, 
DNAzymes were obtained.

Further biochemical characterization 
revealed that the DNAzymes varied in their 
sequences while all of them had two basic 
domains, catalytic domain and substrate-
binding domain. Based on the structures, 
two types of DNAzymes selected via in vitro 
system, the ‘8–17’ DNAzymes and ‘10–23’ 
DNAzymes were proposed (Figure 1).

The ‘8–17’ DNAzyme was derived from 
the 17th clone obtained after eight rounds of 
selective amplification and ‘10–23 DNAzyme 
was similarly obtained from the 23rd clone 
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Figure 1. Structures of ‘8–17’ and ‘10–23’ DNAzymes. The substrate binding domain binds RNA through 
Watson–Crick pairing. The catalytic domain cleaves targets at the site indicated by the arrow.
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after ten-round amplification. A structure of ‘8–17’ 
DNAzymes have a 13-nt-long catalytic core, which 
consists of a short internal stem-loop followed by an 
unpaired region of 4 nt. The stem contained 3 bp and 
at least two of them were G-C while the loop had a 
fixed sequence of 5́ -AGC-3 .́ The unpaired region had a 
sequence of 5́ -WCGR-3´ or 5́ -WCGAA-3´ (W = A/T, 
R = A/G). These DNAzymes preferred an rG-dT 
wobble pair located immediately downstream from the 
cleavage site. However, altering the length of the stem 
or the sequence of the loop could lead to noncatalytic 
activity.

The catalytic core of ‘10–23’ DNAzymes were com-
posed of 15 nt [4–6], the eighth of which was usually T, 
C or A while a T often provided the highest activity. 
The substrate-binding domain bound RNA substrates 
through standard Watson–Crick pairing and these 
DNAzymes cleaved at unpaired purine and paired 
pyrimidine.

DNAzymes are more stable in physiological condi-
tions than ribozymes, even extending the half-life from 
minutes to over 21 h in serum after modification [7]. Also 
their well-catalytic characteristic make them promising 
in targeted gene therapy. With known target, one could 
design corresponding DNAzymes to downregulate 
the target disease genes. To date, DNAzymes, mainly 
‘10–23’ type, have been extensively explored for their 
ability to validate target gene and therapeutic potentials.

Antiproliferative DNAzymes
Uncontrolled proliferation is a typical feature of cancer 
cells. To extend the normal life span and escape from 

the cell cycle, excessive signals promoting cell survive 
are always activated. PI3K-AKT signaling is thought to 
be one of the most important pathways, which makes 
it an ideal target for DNAzymes. Yang et al. designed 
five DNAzymes, based on the analysis of sequences, 
thermodynamics and site distribution within the Akt1 
gene. One of the DNAzymes, namely Dz2, strongly 
inhibited Akt1 mRNA and protein expression in the 
nasopharyngeal carcinoma (NPC) cells CNE1-LMP1, 
and markedly suppressed NPC xenograft growth in 
nude mice. Mechanistically, Dz2 was shown to affect 
multiple key tumorigenic processes in vitro and in vivo 
by downregulating AKT1 expression [8]. There was 
also a recent study showing that the AKT1-specific 
DNAzymes significantly inhibited cell proliferation, 
induced apoptosis and inhibited invasion in thyroid 
tumor SW597 cells [9]. These DNAzymes acted via 
the mechanisms of inhibiting cellular proliferation by 
direct suppression of AKT1 expression.

The inhibition of DNA methyltransferases 
(DNMTs) may lead to demethylation and expression 
of the silenced tumor suppressor genes. Wang et al. 
utilized a multiplex selection system and generated 
some efficient RNA-cleaving DNAzymes targeting 
DNMT1. Introduction of the DNAzymes caused sig-
nificant downregulation of DNMT1 expression and 
reactivation of p16 gene, resulting in reduced cell pro-
liferation of bladder cancers [10]. This study suggests 
that DNAzyme targeting of epigenetic modifying 
enzymes may provide a novel strategy for epigenetic 
inactivation of the genes that caused the uncontrolled 
proliferation.

c-jun, a basic leucine-zipper (bZIP) protein and 
prototypic member of AP-1 transcription factor, was 
upregulated in a variety of cancers. Previous work 
demonstrated that Dz13 could well target c-jun and 
effectively inhibit tumor growth [11]. Further studies 
examined the dose range, sustained effect after cessa-
tion of therapy and biodistribution of Dz13, showing 
that Dz13 was safe and tolerated in animal models [12]. 

Key terms

DNAzyme: A DNA molecule that has the ability to perform 
catalytic action.

LMP1: A critical oncogenic protein encoded by EBV.

c-jun: A transcription factor that is upregulated in many 
types of cancers.
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In this study, the dermal tumor models of squamous 
cell carcinoma and basal cell carcinoma were devel-
oped and Dz13 injected twice a week intratumorally. 
The effect of Dz13 sustained during the injection 
in a dose-dependent manner. No tumor growth was 
observed even 10 days after cessation of therapy when 
injected with 100 μg, comparing to 10 and 20 μg 
Dz13-treated mice. They also provided the evidence 
that the observed effect was dependent on the catalytic 
domain of the DNAzyme and the adaptive immune 
system of the host. To evaluate the drug potential of 
Dz13, biodistribution and toxicology analysis were 
implemented. Transient liver accumulation of Dz13 
was detected after intratumoral administration, while 
no changes of liver function were observed. Phar-
macokinetics of Dz13 via intratumoral, intravenous 
and intradermal routes revealed a favorable profile 
for clinical use. GLP-compliant plasma distribution, 
repeat-dose toxicology and local tolerance studies all 
indicated Dz13 was well tolerated, with no abnormal 
clinical signs, necropsy findings or adverse effects [12].

Recently, Cho and coworkers designed a noncon-
trolled, nonrandomized, nonblinded, dose-escalating 
Phase I clinical trial (ACTRN12610000162011) 
to assess the safety of Dz13 and the tolerance of 
patients [13]. Nine patients were divided into three 
groups, injected with 10, 30 and 100 μg Dz13 intra-
tumorally, respectively, and monitored at 24 h, 7 days, 
14 days and 28 days post dosing. No severe adverse 
events or significant systemic exposure were detected. 
Tumors excised at day 14 had lower c-jun expression 
comparing to predose biopsy. Five patients even had 
decreased tumor depth and immune and inflamma-
tory cell populations increased, indicating the local 
immunity. This study demonstrated the feasibility of 
clinical use of the c-jun-targeted DNAzyme.

In addition, Dass et al. found that downregulat-
ing c-jun with Dz13 could inhibit tumor progres-
sion in osteosarcoma and liposarcoma models due 
to increased apoptosis in cancer cells [14,15]. When 
combined with doxorubicin, Dz13 was shown to 
be able to chemosensitize osteosarcoma cells to the 
chemotherapy [16].

DNAzymes targeting apoptosis pathways
It has been suggested that apoptosis is one of the 
major mechanisms of cell death in response to can-
cer therapy. The Bcl-2 family of proteins is among the 
most studied molecules in the apoptotic pathway and 
elevated in a broad range of human cancers, indicat-
ing that these molecules may have a role in raising 
the apoptotic threshold in a broad spectrum of can-
cerous disorders. DNAzymes targeting Bcl-xL were 
shown to effectively downregulate the target gene 

expression and caused suppression of tumor growth in 
xenograft mouse models [17]. Importantly, the Bcl-xL-
DNAzymes could sensitize the tumor cells to chemo-
therapy and overcome Taxol resistance [17]. Targeting 
other genes involved in apoptosis, such as survivin and 
IGF-II, by DNAzymes was also shown to be a viable 
approach to cancer growth suppression [18,19].

DNAzymes for antimetastasis
Metastasis is one of the hallmarks for malignant can-
cers. Destroy of the basement membrane and invasion 
of cancer cells to extracellular matrix are key steps dur-
ing the process of tumor metastasis. Matrix metallo-
proteinase (MMP), especially the MMP-9, is a critical 
regulator in extracellular matrix degradation, which 
makes it a potential DNAzyme target in metastasis 
inhibition. Yang et al. demonstrated that a DNAzyme-
targeting MMP9 significantly suppressed the invasion 
and migration of lung cancer cells (A549) [20]. Hallett 
designed anti-MMP-9 DNAzyme (AM9D) and evalu-
ated its effect in breast cancer cells (MDA-MB-231) 
and in MMTV-PyMT transgenic breast cancer mouse 
model, showing its inhibitory effect on tumor growth 
and metastasis [21]. Further studies of AM9D on the 
systemic distribution, pharmacokinetics and safety of 
intravenous administration in the same mouse model 
demonstrated that AM9D accumulated the most in 
tumor and then blood and liver. Its initial clearance 
in tumor was approximately 50% slower than other 
organs. No significant adverse effects and abnormal 
organ function were observed [22]. All these data clearly 
warranted a further clinical evaluation of AM9D.

DNAzymes for antiangiogenesis
Angiogenesis is a complicated process, including 
vascular endothelial cell migration, proliferation 
and matrix degradation. It is thought to be a criti-
cal event in tumorigenesis since the newly generated 
blood vessel could supply oxygen and nutrient to the 
deep inside of solid tumors to help fight against the 
hostile microenvironment [23,24]. Thus, interfering 
blood vessel formation could be used to block tumor 
progression [25].

As the elevated expression of VEGF and its recep-
tors have been closely correlated with tumor vas-
cularity, progression and metastasis, targeting of 
VEGF/VEGFRs becomes quite a worthwhile strat-
egy for cancer treatment. Zhang et al. reported that a 
VEGFR2-targeted DNAzyme induced apoptosis and 
markedly inhibits endothelial cell growth compared 
with controls. After the fourth injection of a tumor 
model, there was nearly a 75% decrease of tumor 
size, accompanied by a reduction in blood vessel 
density [26].
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Shen et al. obtained an effective anti-VEGFR1 
DNAzyme (DT18) via a comprehensive in vitro selec-
tion of DNAzymes for their activity to cleave the 
VEGFR-1 mRNA [27]. In a rat corneal vascularization 
model, DT18 significantly inhibited blood vessel for-
mation. In a mouse melanoma model, DT18 markedly 
suppressed B16 tumor growth. Further evaluation of 
DT18 effect on human NPC demonstrated a signifi-
cant inhibition of tumor growth by downregulation of 
VEGFR-1 expression in NPC tumor tissues. Molecu-
lar imaging analysis using MRI showed that the tumor 
microvascular permeability was reduced, which was the 
first in vivo evidence to suggest that the anti-VEGFR1 
DNAzyme had impacts on tumor vasculature.

In addition, transfection of Dz13 targeting c-jun 
into microvascular endothelial cells blocked cell pro-
liferation, migration and MMP2 expression were 
blocked. In vivo, Dz13 also inhibited neovasculariza-
tion in a rat cornea model, which provided the direct 
evidence linking c-jun and angiogenesis [11].

DNAzymes targeting oncogenic viruses
It has been reported that nearly 12% of cancers have 
been causally linked to human oncogenic viruses, 
such as EBV for lymphomas and NPCs, HBV for liver 
cancers and HPV for cervical cancers. Some of viral 
proteins are directly involved in the dysregulation of 
cellular processes leading to tumor progression. Tar-
geting the oncoproteins presents a great potential for 
the virus-associated cancers as these proteins do not 
exist in host cells, thus avoiding nonspecific toxicity. 
There have been a number of studies using DNAzymes 
to target the virus oncoproteins [28–31]. Here, we take 
an example of the EBV-targeted DNAzyme to illus-
trate the feasibility of the strategy for cancer treatment.

EBV-encoded LMP1 is considered to be a critical 
oncogenic factor in EBV-NPC [32]. It works as a con-
stitutively activated TNF receptor (TNFR) and acti-
vates several intracellular signaling pathways, such as 
NF-κB, AP-1 and JAK/STAT pathways [33–36]. Lu and 
Ke designed DNAzymes targeting LMP1 and revealed 
that these DNAzymes could inhibit LMP1 expression 
and repress cell proliferation [29,37]. They also showed 
that downregulation of LMP1 by the DNAzyme 
(Dz1) led to decrease in Bcl-2 expression and increase 
in cytochrome c release from mitochondria, which 
suggested a direct link between LMP1 and cell apop-

tosis [29,38]. It was also reported that Dz1 could cause 
cell cycle arrest via affecting DNA damage repair [39]. 
Further studies established Dz1 as a radiosensitizer 
as shown both in cells and in vivo via interfering the 
LMP1-activated signaling pathways [38,40,41]. Extensive 
preclinical studies demonstrated that Dz1 had a favor-
able PK profile and low toxicity, indicating targeting 
LMP1 with DNAzymes could be a promising remedy 
when treating EBV-associated cancers, such as NPC. 
Based on the above studies, a randomized and dou-
ble-blind clinical study was conducted, in which 40 
NPC patients receiving Dz1 or saline combined with 
radiation therapy participated. After 3 months follow-
up, results revealed that the DZ1 group had a higher 
tumor regression rate than the control. Clinical read-
outs indicated that Dz1-treatment caused change of 
tumor microvascular permeability measured by DCE-
MRI and a lower EBV DNA copy in patient serum. 
All the data indicated Dz1 could be used as a safe and 
effective adjuvant for NPC radiotherapy [42].

Conclusion & future perspective
Comparing to ribozymes, antisense oligonucleotide 
and RNA interference, DNAzymes had many advan-
tages. First, it is comprised deoxyribonucleotides, 
which are more stable and easy to synthesize, and 
chemical modifications of DNAzymes could further 
enhance the stability in serum without affecting the 
catalytic activity [43,44]. Second, DNAzymes exhibit 
greater substrate flexibility than conventional and 
hammerhead ribozymes since their substrate binding 
domain could vary with the target sequence as long 
as the catalytic core is unchanged [45–48]. All these 
advantages make DNAzymes promising therapeutic 
agents for cancer therapy. Recently a similar technol-
ogy CRISPR that cuts DNA in a manner similar to 
RNAi is emerging. While it has shown its potential 
for gene modification, further biological and clinical 
validations are needed for possible cancer treatment.

Nevertheless, obstacles for DNAzyme therapy still 
remain as for other nucleic acid-based therapeutics. 
Key issues are efficient delivery and finding the tar-
gets within tumor microenvironment. DNAzymes are 
required to travel from the administration site to cir-
culation, go through the tumor stroma and specifically 
recognize the cancer cells. To date, attempts at delivery 
systems for DNAzymes have been made by conjugation 
of DNAzymes to polymers or proteins to facilitate the 
cellular uptake [49]. With further technology develop-
ment in drug delivery and deepening understanding of 
tumor biology, DNAzyme therapy for cancers should 
be realized through a correct choice of the targets and 
a suitable disease setting in which the DNAzyme can 
be directly applied.

Key terms

VEGFR1: An important signal receptor that is involved in 
angiogenesis.

Radiosensitizer: An agent that makes tumor cells more 
sensitive to radiation therapy.
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Executive summary

•	 DNAzymes could be chemically modified without affecting their catalytic activity and become more resistance 
to the nuclease degradation in vivo. They cleave the targets at specific site, inhibit their expression effectively 
and then repress tumor growth.

•	 Oncogenes often mutate or express at high level in cancer cells and are thought to be a driver for 
tumorigenesis and cancer development. Activated oncogenes could block programmed apoptosis and 
promote cell survive through various signaling pathways. DNAzymes targeting these oncogenes could 
suppress cell proliferation, metastasis, angiogenesis and tumor growth.

•	 Two recent clinical studies demonstrated that the DNAzymes are safe and effective in patients, revealing their 
therapeutic potential in clinical settings.

•	 As for other nucleic acid-based drugs, DNAzyme technology is also facing some challenges, such as efficient 
delivery and precise targeting. Further work is needed in biologically relevant models to address these issues 
before the full potential of DNAzymes in cancer therapy is realized.
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