Organización de computadoras

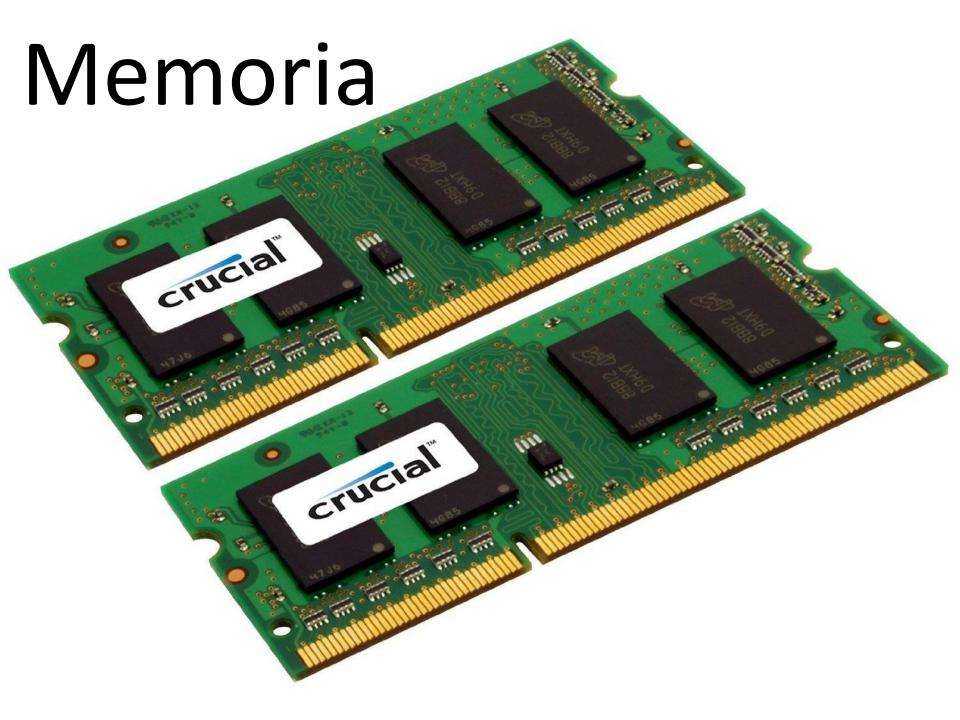
Clase 3

Universidad Nacional de Quilmes

Lic. Martínez Federico

Ensamblar y desensamblar

- Ensamblar y desensamblar
- Ciclo de ejecución de instrucción


- Ensamblar y desensamblar
- Ciclo de ejecución de instrucción
- Formato de las instrucciones

- Ensamblar y desensamblar
- Ciclo de ejecución de instrucción
- Formato de las instrucciones
- Primera máquina de uso general Q1

Memoria

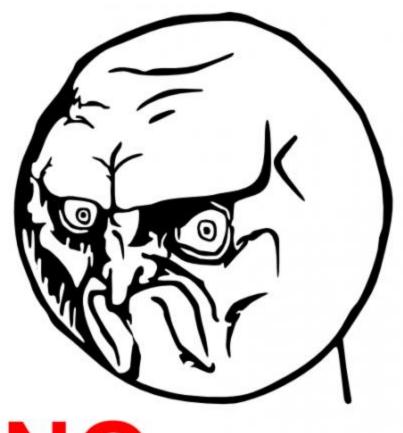
- Memoria
- Buses

- Memoria
- Buses
- Arquitectura Q2

Dirección	Memoria							
0x0000	0	1	1	0	1	0	1	0
0x0001	1	1	1	1	0	1	1	1
0x0002	0	0	0	0	0	1	0	1
0x0003	1	1	0	0	1	0	0	1
0x0004	1	0	1	0	1	1	1	0

Dirección	Memoria							
0x0000	0	1	1	0	1	0	1	0
0x0001	1	1	1	1	0	1	1	1
0x0002	0	0	0	0	0	1	0	1
0x0003	1	1	0	0	1	0	0	1
0x0004	1	0	1	0	1	1	1	0

Bits

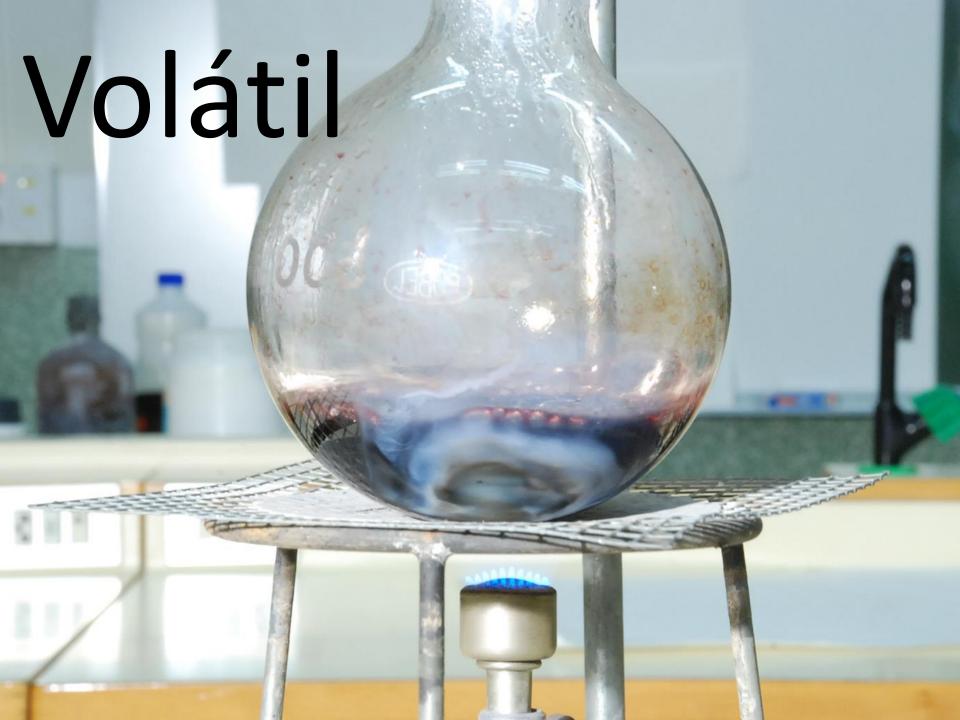

Dirección	Memoria							
0x0000	0	1	1	0	1	0	1	0
0x0001	1	1	1	1	0	1	1	1
0x0002	0	0	0	0	0	1	0	1
0x0003	1	1	0	0	1	0	0	1
0x0004	1	0	1	0	1	1	1	0

Celda de memoria

Dirección	Memoria							
0x0000	0	1	1	0	1	0	1	0
0x0001	1	1	1	1	0	1	1	1
0x0002	0	0	0	0	0	1	0	1
0x0003	1	1	0	0	1	0	0	1
0x0004	1	0	1	0	1	1	1	0

Celda de memoria

¿Las direcciones se guardan en la memoria?


NO.

La dirección no se guarda dentro de la casa

RAM (Random access memory)

Ejemplo

Dirección	Contenido
0x0	1101
0x1	0010
0x2	1011
0x3	0111

¿Cuáles son las direcciones de la memoria? ¿Qué devuelve si le pedimos leer la celda 2?

• Recibe señal de lectura

- Recibe señal de lectura
- Recibe la dirección a leer

- Recibe señal de lectura
- Recibe la dirección a leer
- Entrega el contenido de la celda pedida

lectura

Dirección Contenido 0x0000 11011101 0x0001 00100010 10111011 0x0002 0x0003 01011111 11111011 0x0004 0x0005 00001001

lectura

0x0003

Dirección	Contenido
0x0000	11011101
0x0001	00100010
0x0002	10111011
0x0003	01011111
0x0004	11111011
0x0005	00001001

01011111

• Recibe señal de escritura

- Recibe señal de escritura
- Recibe la dirección a escribir

- Recibe señal de escritura
- Recibe la dirección a escribir
- Recibe el contenido a guardar

- Recibe señal de escritura
- Recibe la dirección a escribir
- Recibe el contenido a guardar
- Guarda dicho contenido

escritura

0x0004

1000001

Dirección	Contenido
0x0000	11011101
0x0001	00100010
0x0002	10111011
0x0003	01011111
0x0004	11111011
0x0005	00001001

escritura
Ox0004

10000001

Dirección	Contenido
0x0000	11011101
0x0001	00100010
0x0002	10111011
0x0003	01011111
0x0004	10000001
0x0005	00001001

Direcciones

• ¿Cuántos bits necesito para las direcciones de una memoria de 8 celdas?

Direcciones

• ¿Cuántos bits necesito para las direcciones de una memoria de 2^N celdas?

Lectura

Señal de lectura Dirección a leer Contenido de la celda

Escritura

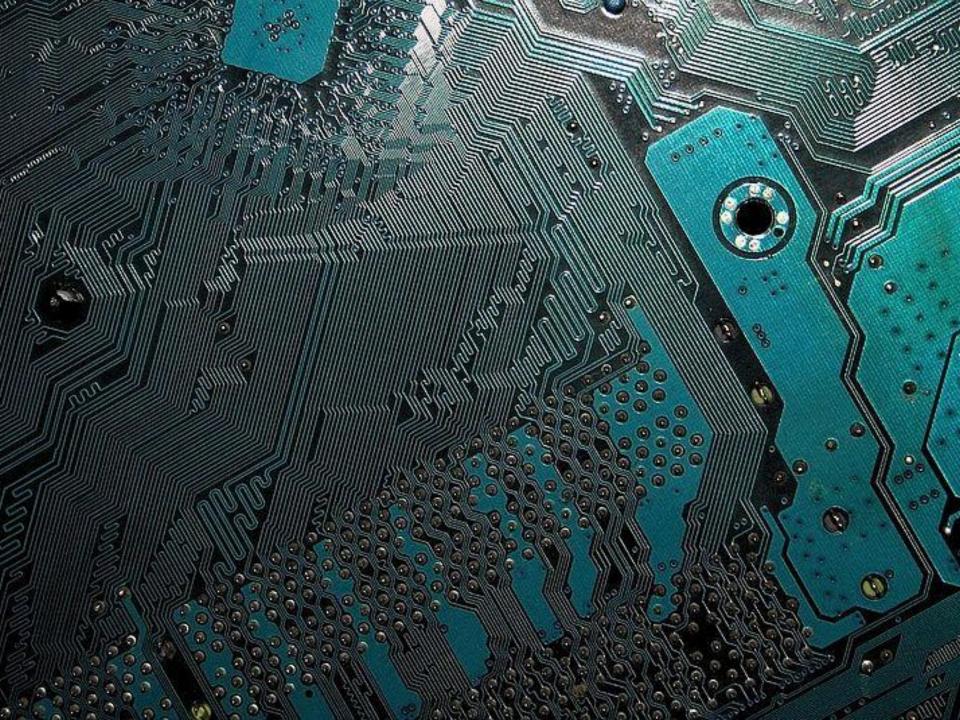
Señal de escritura

Dirección a escribir

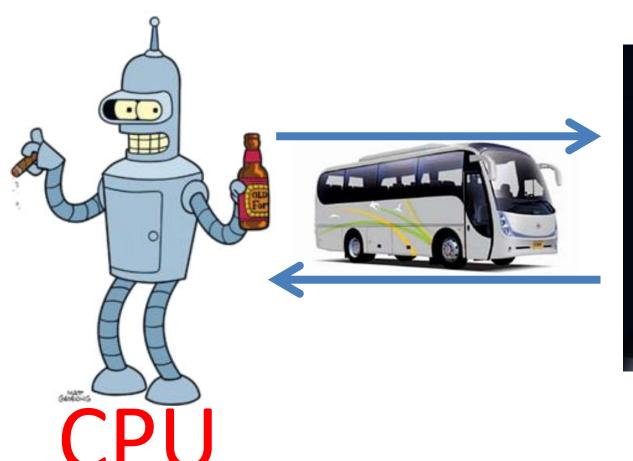
Contenido a guardar

Lectura

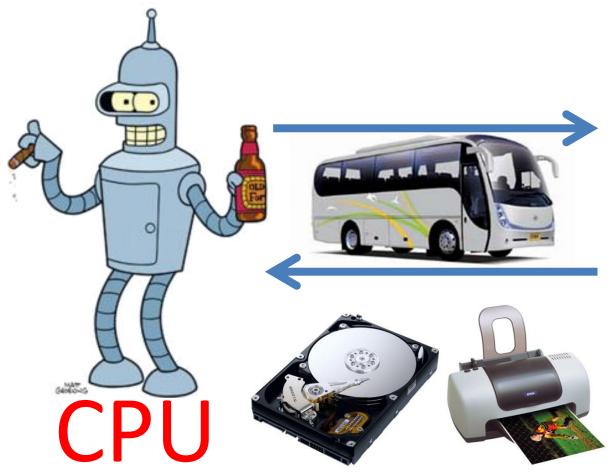
Señal de lectura
Dirección a leer
Contenido de la elda


Escritura

Señal de escritura


Di ección a escribir

Contenido a guardar


Buses

RAM

Buses

RAM

Líneas del bus (Tipos)

Tipos de línea

Líneas de control:

Señales de control hacia la memoria

Tipos de línea

Líneas de direcciones:

Direcciones hacia la memoria

Tipos de línea

Líneas de datos:

Datos desde y hasta la memoria

Bus

- Señales de control hacia la memoria
 - Líneas de control

- Direcciones hacia la memoria
 - Líneas de direcciones

- Datos desde y hasta la memoria
 - Líneas de datos

Ancho del bus

Ancho del bus

Bus de direcciones

Determina la cantidad de direcciones

Dirección	Contenido
0x0000	11011101
0x0001	00100010
0x0002	10111011
0x0003	01011111
0x0004	11111011
0x0005	00001001

Ancho del bus

Datos

Determina la cantidad de bits por celda (suele)

Dirección	Contenido
0x0000	11011101
0x0001	00100010
0x0002	10111011
0x0003	01011111
0x0004	11111011
0x0005	00001001

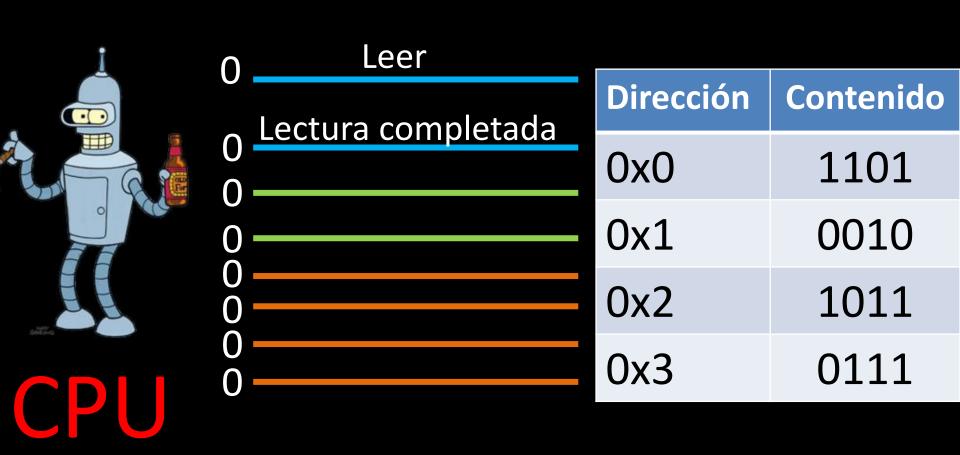
Bus de control

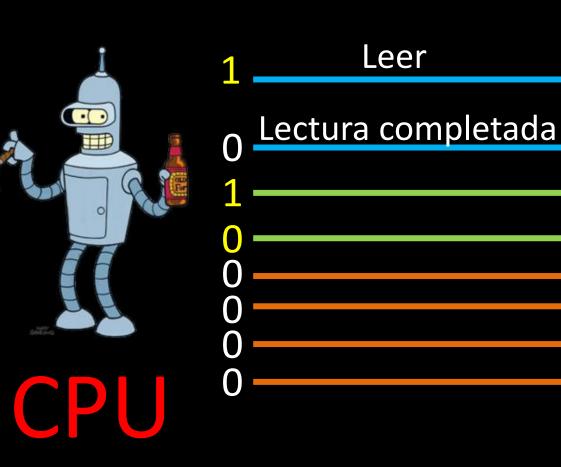
Tipos de señales

Bus de control

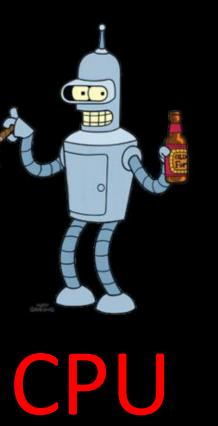
Líneas de comando

Leer

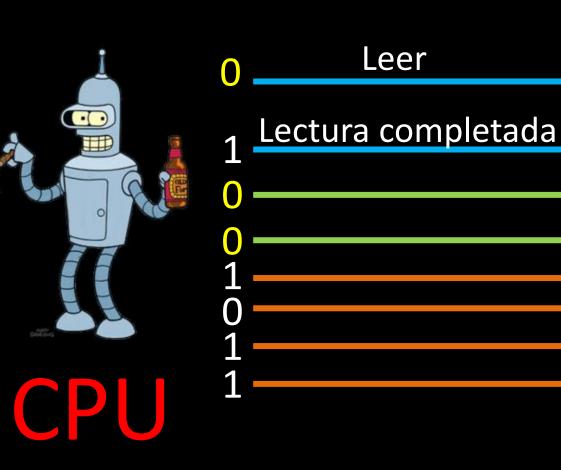

Escribir


Bus de control

Líneas de temporización


El bus de datos esta ocupado

Quiero usar el bus



Dirección	Contenido
0x0	1101
0x1	0010
0x2	1011
0x3	0111

1	Leer
1	Lectura completada
1	
0	
O	
1	

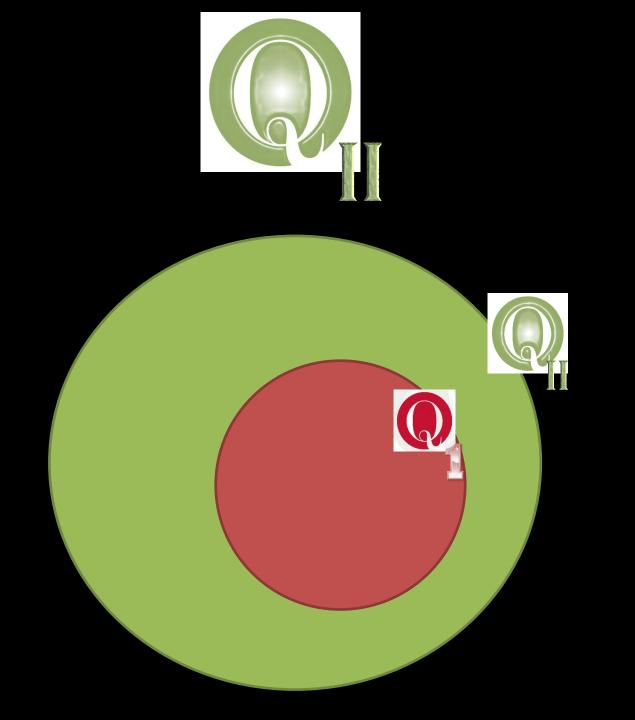
Dirección	Contenido
0x0	1101
0x1	0010
0x2	1011
0x3	0111

Dirección	Contenido
0x0	1101
0x1	0010
0x2	1011
0x3	0111

Ejercicio

- Si la memoria tiene 8 celdas, cada una de 1 byte:
 - –¿Cuántas líneas de direcciones se necesitan?
 - –¿Cuántas líneas de datos se necesitan?

Después del éxito de...



Llega a su clase ...

Arquitectura

La venganza de la memoria

Mismas operaciones

Operación	Código	Efecto
MUL	0000	Dest ←Dest * Origen
MOV	0001	Dest← Origen
ADD	0010	Dest ← Dest + Origen
SUB	0011	Dest← Dest - Origen
DIV	0111	Dest← Dest% Origen

• Nuevo modo de direccionamiento

Modo	Código
Inmediato	000000
Registro	100RRR
Directo	001000

Nuevo modo de direccionamiento

MOV [0x00F0], 0x0004

• Mismo formato de instrucción

Cod Op	Modo Destino	Modo origen	Destino	Origen
(4bits)	(6 bits)	(6 bits)	(16 bits)	(16 bits)

Arquitectura	Destino (16 bits)	Origen (16 bits)
	No válido	Inmediato
	Directo	Inmediato, directo

- Ejemplos:
 - -MOV [0x0001], R0
 - -MOV [0x00FE], 0x00A1
 - -ADD [OxFFAB], [OxBBA7]
 - -SUB RO, [0x2DC6]

¿Qué hace cada instrucción?

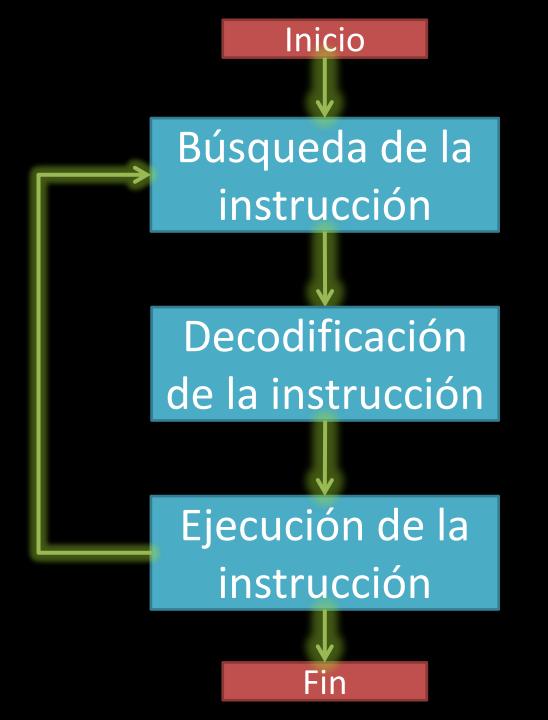
Ensamblemos

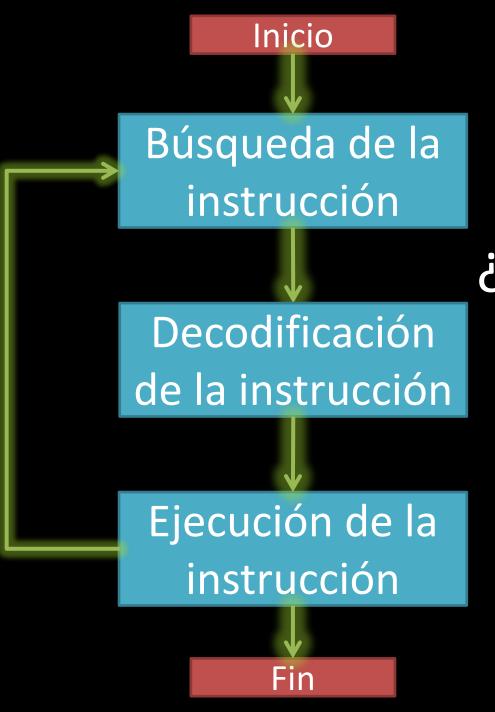
- -MOV [0x0001], RO
- -MOV [0x00FE], 0x00A1
- -ADD [0xFFAB], [0xBBA7]
- -SUB RO, [0x2DC6]

Ejercicios

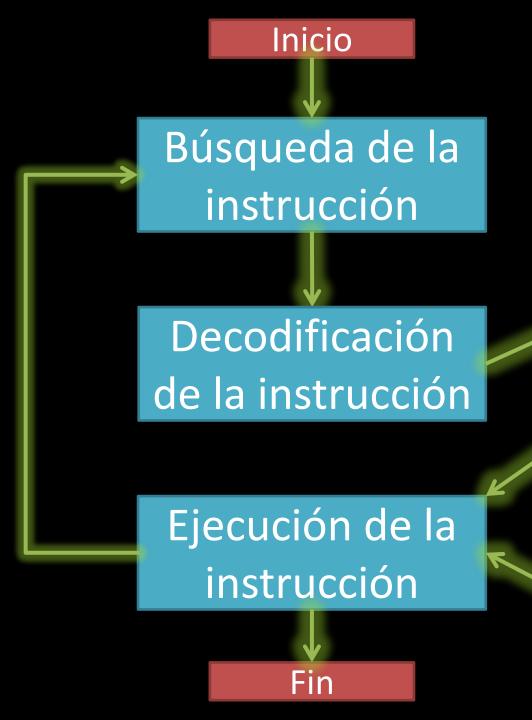
 Hacer un programa que multiplique por 12 el valor de la celda 7

 Hacer un programa que sume el valor de la celda 0x7000 con el valor de R1 y guarde el resultado en la celda 0xABCD


Ejercicios


Dado que las direcciones de memoria tienen 16 bits, y las celdas también tienen 16 bits.

¿Qué tamaño de memoria maneja



Ciclo de instrucción

¿Y los operandos?

¿Hay operandos en memoria?

Obtener operandos

Búsqueda de la instrucción

Lecturas: Varían entre 1 y 3

Obtener operandos

Lecturas: Varían entre 0 y 2

Ejecución de la instrucción

Escrituras: Varían entre 0 y 1

Ejercicio

 Completar la cantidad de accesos a memoria en la siguiente tabla:

Instrucción	FI	FO	ST
MOV RO, R1			
ADD RO, 0xF0CA			
SUB [0x1111], 0x1111			
MUL [0x0010], [0xFEDE]			
DIV R1, [0x43AE]			

- Memoria:
 - Organización
 - Lectura
 - Escritura

- Memoria:
 - Organización
 - Lectura
 - Escritura
- Buses:
 - ¿Qué?
 - Tipos

- Memoria:
 - Organización
 - Lectura
 - Escritura
- Buses:
 - ¿Qué?
 - Tipos
- Arquitectura

